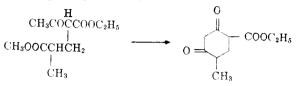
Basic Exchange Resins as Catalysts in the Michael Reaction. I.

ERNST D. BERGMANN AND RUTH CORETT

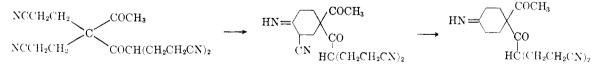
Received September 26, 1955

Two commercial basic resins, Amberlite IRA 400 and IRA 410, have been studied as catalysts in Michael reactions Fifteen acceptor-donor systems have been investigated, and the results are discussed.


Exchange resins, both of acidic and—to a lesser degree—of basic¹⁻⁴ nature, are used widely as catalysts. It seemed of interest to investigate systematically the applicability of basic resins in the Michael reaction, as only some occasional observations in this direction have been reported.⁵⁻⁷ It would appear that these resins might facilitate the kinetic analysis of the reaction and the working up of the reaction products, and help to avoid secondary reactions as they often occur in homogeneous catalysis.

In this first paper, two commercial resins, Amberlite IRA 400 ("A") and Amberlite IRA 410 ("B") have been compared systematically in a number of relatively simple systems. Both are quaternary ammonium salts on a polystyrene matrix: the second is somewhat less basic. The reactants were mixed with the resin (in its OH'-form) and the mixture was kept at room temperature. The determination of the refractive index of the liquid provided a simple means of following the course of the reaction. When the change of the refractive index became negligible, the supernatant was filtered from the catalyst and worked up by the usual methods.

The results of these experiments are summarized in Tables I–IV.


DISCUSSION

The products obtained were the normal ones; only in two cases secondary cyclization reactions were observed. From acetylacetone and acrylonitrile (Table II, No. 6, 7) a product of the composition $C_{16}H_{21}N_3O_2$ was isolated, for which the following mechanism of formation has been assumed in analogy with known reactions: and methyl methacrylate was in some runs converted into ethyl 4-methyl-cyclohexane-1,3-dione-6-carboxylate (Table IV, No. 3).

One of the conclusions to be drawn from the experimental data is that α -substitution in the acceptor even by a methyl group makes both the resins used inefficient as catalysts: with methyl methacrylate, only 2-nitropropane and (with resin A only) ethyl acetoacetate could be condensed; however, even as reactive donor molecules as acetylacetone, benzyl cyanide, or diethyl malonate did not condense. The only other reaction which could not be achieved was the condensation between diethyl malonate and acrylonitrile in the presence of resin B. Here, a second characteristic of the resincatalyzed Michael reactions expresses itself. The two resins used appear to possess specific condensing activity in several systems, so that one may expect by the selection of a suitable resin to carry out one of a number of possible condensation reactions -a point which deserves further study. In certain cases (Table I, No. 3,4; Table III, No. 3,4; Table IV, No. 1,2), one of the resins gives considerably higher yields than the other, and it is not always the same resin which is more efficient.

The method employed makes it possible to compare semi-quantitatively different donors and acceptors in their ability to undergo Michael re-

The normal (1:1) product from ethyl acetoacetate

- (1) Durr, Compt. rend., 236, 1571 (1953).
- (2) Austerweil and Pallard, Bull. soc. chim. France, 678 (1953).
 - (3) Mastagli, et al., Bull. soc. chim. France, 693 (1953).
 - (4) Durr and Mastagli, Compt. rend., 235, 1038 (1952).

(5) Schmidle and Mansfield, Ind. Eng. Chem., 44, 1388 (1952).

(6) Schmidle and Mansfield, U. S. Patent 2,658,070
(Chem. Abstr., 48, 13715 (1954)).
(7) Howk and Langkammerer, U. S. Patent 2,579,580

(7) Howk and Langkammerer, U. S. Patent 2,579,580 (*Chem. Abstr.*, 46, 7114 (1952)).

actions. Using the yields as indicator, one can, e.g., derive from the experiments with acrylonitrile (Table III), the following sequence: 2-nitropropane > acetylacetone > ethyl acetoacetate > benzyl cyanide > diethyl malonate. This point is now being studied in a more quantitative manner.

The yields obtained are satisfactory and in some cases exceed significantly those obtained with the classical procedures.

TEL-AVIV, ISRAEL

TABLE I	MICHAEL REACTION WITH METHYL VINYL KETONE (0.1 mole) AS ACCEPTOR	(Temperature 30°)
---------	--	-------------------

				(Temperature 30°)	(
	Donor	Resin	Duration	Proof	Product			C	Analysis	lysis H	H
No.	(0.1 mole)	(g.)	(days)	Formula	Yield	B.P., °C.	Mm.	Cale'd	Found	Cale'd	Found
-i 6i	1-Nitropropane ^a 2-Nitropropane ^a	A (8) B (8)	30 30 30	(CH ₃) ₂ C(NO ₂)CH ₂ CH ₂ CH ₅ COCH ₃ (CH ₃) ₂ C(NO ₂)CH ₂ CH ₂ COCH ₃	54 36	123 118	$\frac{10^{cd}}{7}$				
çî.	Ethyl acetoacetate	A (8)	35	CH3COCHCH2CH2COCH3		75-78	1.2	60.09	60.4	8.0	8.0
				COOC,Hs CH3COC(CH2CH2COCH3)2	26	125-126	1.2	62.2	62.4	8.1	7.9
4.	Ethyl acetoacetate	B (8)	35	cooc2H6 CH3COCHCH2CH2COCH2		68-70	0.9	60.09	60.1	8.0	8.4
				$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	14	115	0.7	62.2	62.8	8.1	8.4
5.	Diethyl malonate ^b	A (8)	50	$\begin{pmatrix} 1 \\ COOC_3H_6 \\ (H_6C_2OOC)_8CHCH_2CH_2COCH_3 \end{pmatrix}$	38	133-135	4				
6.	Diethyl malonate ^b	B (8)	50	(H ₆ C ₂ OOC) ₂ CHCH ₂ CH ₂ COCH ₃ { (H ₆ C ₂ OOC) ₂ C(CH ₂ CH ₂ COCH ₃) ₂ ^J	36	74-75 108-110	$0.4 \\ 0.4$	$57.4 \\ 60.0$	57.7 59.6	7.8 8.0	7.9 7.8
^a Diluted with Soc., 74, 3664 (1 45, 5720 (1951)]	^a Diluted with 10 ml. of dioxane. ^b Diluted with 10 ml. of eth Soc., 74, 3664 (1952); British Celanese Ltd., British Patent 67 45, 5720 (1951)].	. ⁸ Diluted wit nese Ltd., Br	th 10 ml. of et itish Patent (^a Diluted with 10 ml. of dioxane. ^b Diluted with 10 ml. of ethanol. ^c DNP, m.p. 118°, while Schechter, <i>et al.</i> ^d report m.p. 130.5–131.5°. ^d Schechter, Ley, and Zeldin, <i>J. Am. Chem. oc.</i> , 74, 3664 (1952); British Celanese Ltd., British Patent 671,412 [<i>Chem. Abstr.</i> , 47, 2198 (1953)]. ^e Henecka, <i>Ber.</i> , 81, 197 (1948). ^f Kress, U. S. Patent 2,540,267 [<i>Chem. Abstr.</i> , 5720 (1951)].	hter, et al. ^d)]. ^e Henec ¹	^r report m.p. 13 <a, <i="">Ber., 81, 19</a,>	0.5–131.5° 7 (1948). ¹	. ^d Schechte Kress, U. S	r, Ley, and . Patent 2,	Zeldin, J. 540,267 [Ch	Am. Chem. em. Abstr.,
				TABLE II							
			R.	MICHAEL REACTIONS WITH OCTVL ACRYLATE ⁴ AS ACCEPTOR (Temperature 30°, time of reaction 45 days)	tylate ^a as tion 45 day	Acceptor 's)					
No.	Donor	Mole	Resin (g.)	Product Formula	let Yield	B.n., °C.	Mm.	C Cale'd	Analysis C Found C	'sis H Calc'd	H

				CH ₅ COC	CH3COC2H3 CH3COC(CH2CH2COOC3H17)2	39	210	0.25	68.8	68.5
Ŧ	Ethyl acetoacetate	0.5	B (4)	CH,COCH	ĊOOC2Hs CH3COCHCH2CH2COOC3H17		165-170 0.9	0.9	65.0	64.8
				-ŏ	COOC ₂ H ₆ ^b					
^a B.p.	$^{\alpha}$ B.p. 92°/0.5 mm. b The bis-adduct began to decompose upon distillation.	uct began t	o decompose ı	ıpon distilla	tion.					

108

VOL. 21

9.8 9.6

10.0 9.6

61.5

61.8

3 3 0.6

 $\frac{165-166}{161-163}$ $\frac{152-156}{152-156}$

202

 $(CH_3)_2C(NO_2)CH_2CH_2COOC_3H_{17}$ $(CH_3)_2C(NO_2)CH_2CH_2COOC_3H_{17}$

A (8) B (8) A (4)

 $\begin{array}{c} 0.1 \\ 0.1 \\ 0.5 \end{array}$

Ethyl acetoacetate 2-Nitropropane 2-Nitropropane

CH₃COCHCH₂CH₂COOC₈H₁₇

65.0

65.0

10.2

10.3

9.8

9.6

N N Cale'd Found		11.8 11.8		9.1 9.3		14.7 15.0				16.5 17.0 18.7 18.5	447); b.p. 70°/0.09 , Chem. Abstr., 47, mic and was kept n, b.p. 70–71°/0.9 180–180.4°. k 2,4 50°. 65, 23 (1943)
Analysis H H Jc'd Found		7.3		7.2	7.5	7.0		7.1		5.8 6.1	1505 (19 Gurvich, s exother w fractio 8); m.p. . <i>Chem.</i> 1
C ^H		7.0		7.2	7.2	7.3		7.3		6.0 6.0	m. Soc., and set, and res, it was res, it was h_{1}^{n} A lov 911 (194 911 (194 \dots M. 23) m M
C Found		61.2		62.8	62.3	67.9		66.9		77.6 75.6	5, J. Che intev, Kc in 6 hou nposition em., 13, d Riener ass3 (100
C Calc'd		61.0		62.8	62.8	67.0		67.0		77.5 75.3	and Low 2°); Tere ok place same cor . Org. Ch iruson an
Mm.	44 60		0.8	0.6	0.7	0.8		6.0	0	0.8 0.8	t, Hunt, $(m.p. 8)$ (m.p. 8) action to action to the layer the verine, J 24.2). t B
B.p., °C.	122-123 122-123 115	Q	80; 80- 85	00 119–120	115-116	163-165		175-180	. 130	145-148 212-215	(ekley, Elliot 2850 (1942) the same rei uppeared to 1 Zellars and 1 f. H, 4.8; N, 5 d. Cb
Yield	90 86 86	24	22		15	15	18	28	50 18	43	ing. ^b Bu Soc., 64, out 40°, which ε thed by Z thed by Z thed by Z
Product Formula	(CH ₄) ₂ C(NO ₂)CH ₂ CH ₂ CN ^b (CH ₄) ₂ C(NO ₂)CH ₂ CH ₂ CN ^b CH ₄ COCHCOOC ₂ H ₅	CH₄CH₂CH₂CN [€] CH₄COC(CH₄CH₂CN)₂	cHaCOC2H ^d CHaCOC(CH2CH2CN)2	CH3COCHCH2CH2CN CH3COCHCH2CH2CN	CH4COCHCH2CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3C	COCH ^a COCH ₅	CH4COC(CH4CH2CN)2 CH4COC(CH4CH2CN)2 COCH2Ai	$HN = \underbrace{COCH_3}_{L}$	UOCH (CH2CH2CN)2" (H ₆ C2OOC)2C(CH2CH2CH3CH)2' (H ₆ C2OOC)2CHCH2CH2CH2CN"	No reaction C ₆ H ₅ CH(CN)CH ₂ CH ₂ CN ⁿ C ₆ H ₅ C(CN)(CH ₂ CH ₂ CN) ₂ °	^a Exothermic reaction. The reaction temperature was kept below 45° by cooling and vigorous stirring. ^b Buckley, Elliott, Hunt, and Lowe, J. Chem. Soc., 1505 (1947); b.p. 70°/0.09 mm. ^c Yoho and Levine, J. Am. Chem. Soc., 74, 5597 (1952). ^d Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942) (m.p. 82°); Terentev, Kost, and Gurvich, Chem. Abstr., 47, 8663 (1953). ^e A small unidentified higher fraction, b.p. 116°/0.9 mm., was also observed. ^J At about 40°, the same reaction took place in 6 hours; it was exothermic and was kept in check by cooling and vigorous stirring. ^a A low fraction, b.p. 79–81°/0.1 mm., was also observed, which appeared to have the same composition. ^a A low fraction, b.p. 70–71°/0.9 mm., was also observed; 24, dinitrophenyl-hydrazone, m.p. 145.5°. ^e This substance has been described by Zellars and Levine, J. Org. Chem. 13, 911 (1948); m.p. 180–180.4°, ^k 2,4– Dint, was also observed; 24, dinitrophenyl-hydrazone, m.p. 145.5°. ^e This substance has been described by Zellars and Levine, J. Org. Chem. 13, 911 (1948); m.p. 180–180.4°, ^k 2,4– Dint, ophen 70, divide of Low Chem. Jos. C, 51.9; H, 4.5; N, 23.8; Foundi, C, 52.1; H, 4.8; N, 24.20°, ^H Bruson and Riener, J. Am. Chem. Soc., 55, 23 (1943)
Duration	2 days ^a 8 days ^a 40 days		40 days	2 days'	30 days		6 hours reflux		35 days	30 days 3 days	Tature was l 74, 5597 (action, b.p. A low fracti <i>ydrazone</i> , m Jale'd for C
Resin (8 g.)	A B A		В	V	В		В		A	A B	n tempe <i>zm. Soc.</i> uigher fr ring. " <i>I</i> <i>henyl-hi</i> (<i>Anal.</i> C
Mole	0.1 0.1 0.1		0.1	0.1	0.1		0.1		0.1	$0.1 \\ 0.3$	e reactio Am. Ch mutified 1 prous stin dinitrop p. 118° (Patent 2
Donor	2-Nitropropane 2-Nitropropane Ethyl acetoacetate		Ethyl acetoacetate	Acetylacetone	Acetylacetone		Acetylacetone		Diethyl malonate	Diethyl malonate Benzyl cyanide	^a Exothermic reaction. The reaction temperature was kept belomm. ^c Yoho and Levine, J. Am. Chem. Soc., 74 , 5597 (1952). ^d 8663 (1953). ^e A small unidentified higher fraction, b.p. 116°/0 in check by cooling and vigorous stirring. ^e A low fraction, b.p. mm., was also observed; 2, 4 dimitrophenyl-hydrazone, m.p. 118° (Anal. 2 Aled Yashus Miceles, 17 S. Dimitrophenylhydrazone, m.p. 118° ($Anal. Cale'd for Cash_{23} A_{123} N_{12}$, (m. 629). Mices, a 17 S. Dimitrophen, 236, ($Cash_{24} A_{123} N_{12}$).
No.	નં જં જં		4	ъ.	6.		7.		×.	9.	^a Exc mm. ^c 3663 (1 n chec) nm. w nm. w 5 mm. b

109

No.	Donor	Mole	Resin (8 g.)	(days)	Formula	, mint,	ů, C	Mm.
1.	2-Nitropropane	0.3	A	50	(CH ₃) ₂ CCH ₂ CH(CH ₃)COOCH ₃	20	120	10
5	2-Nitropropane	0.3	В	50	$\log_{n_2}^{ c_b }$ (CH ₃) CCH_2 CH(CH ₄)COOCH ₄	62	104	4
ŕ	Ethyl acetoacetate	0.2	A	30	NO2 ^d CH ₃ COCHCH ₂ CH(CH ₃)COOCH ₃	38		
					L COOC2H50d or			
					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38	118	0.9
					 CH3			
	Ethyl acetoacetate	0.2	В	30	No reaction			
	Acetylacetone	0.3	V	30	No reaction			
	Acetylacetone	0.3	B	30	No reaction			
	Diethyl malonate	0.3	4	30	No reaction			
	Dietnyl malonate	0.0	д .	00 1	IN 0 reaction			
	Benzyl cyanide	0.1	V	30	No reaction			
10.	Benzyl cyanide	0.1	B	30	No reaction			

TABLE IV

110